INDEPENDENT SEQUENCES IN BANACH SPACES

BY

A. SZANKOWSKI AND P. TERENZI

ABSTRACT

In every ∞ -dimensional separable Banach space X there is a fundamental sequence such that no subsequence of it, which is <u>fundamental</u> in X, is independent ("{ x_n } is fundamental in X" means $X = \text{span}{x_n}$).

A sequence $\{x_n\}_{n=1}^{\infty}$ in a Banach space X is called ω -independent if for any sequence of scalars $\{c_n\}_{n=1}^{\infty}$,

$$\sum_{n=1}^{\infty} c_n x_n = 0 \quad \text{implies} \quad c_n = 0 \text{ for every } n.$$

Erdös and Straus proved in [1] that every algebraically independent sequence $\{x_n\}_{n=1}^{\infty}$ in a Banach space contains an infinite subsequence $\{x_{n_i}\}$ which is ω -independent. A natural question arises whether these n_i can be chosen so that

$$\overline{\operatorname{span}} \{ x_n \}_{n=1}^{\infty} = \overline{\operatorname{span}} \{ x_{n_i} \}_{i=1}^{\infty}.$$

In this note we provide a negative answer to this question. We prove the following

THEOREM. Let X be an infinite dimensional separable Banach space. There exists an algebraically independent sequence $\{f_n\}_{n=1}^{\infty}$ in X which is fundamental in X, such that no fundamental subsequence of $\{f_n\}$ is ω -independent.

PROOF. Let $\{(e_n^*, e_n)\}_{n=1}^{\infty}$ with $e_n^* \in X^*$, $e_n \in X$, be a total and fundamental biorthogonal system in X, with $||e_n|| = 1$ for $n = 1, 2, \cdots$.

For $f \in X$ we denote

$$f(n) = e_n^*(f), \quad \text{supp } f = \{n : f(n) \neq 0\}.$$

We define a sequence $y_1, y_2, \dots \subset X$ by recursion:

Received July 9, 1981

$$y_1 = 0$$
 and for $n = 1, 2, \cdots$,
 $y_{2n} = y_n + 3^{-n}e_n$, $y_{2n+1} = -y_n + 3^{-n}e_n$

and we set

$$f_n = y_n + 3^{-n} e_n.$$

Let us observe that span $\{f_n\}_{n=1}^m = \text{span}\{e_n\}_{n=1}^m$ for every *m*, therefore $\{f_n\}_{n=1}^\infty$ is fundamental in *X*.

We also see that $||f_m|| < 1$ for every *m*. Suppose that $A \subset N$ is such that

$$\overline{\operatorname{span}}\{f_n:n\in A\}=X.$$

We are going to find some coefficients b_n , for $n \in A$, not all of them equal to 0, so that $\sum_{n \in A} b_n f_n = 0$, thus proving our theorem.

Let us start with the following observation.

For every m the set

$$A_m \stackrel{\text{def}}{=} \{n \in A : f_n(m) \neq 0\}$$

is infinite.

Indeed A_m is not empty (because e_m^* vanishes on span $\{f_j : j \notin A_m\}$), hence A_m is infinite (since $A_m \supseteq A_{2m} \cup A_{2m+1}$ and so on), for every m.

Now we shall pick some numbers $\alpha(j, m)$, $\beta(j, m)$ for $m = 1, 2, \cdots$ and $j = 1, 2, \cdots, 3^{m-1}$ so that

(1)
$$\beta(3^{m-2}, m-1) < \alpha(1, m) < \beta(1, m) < \alpha(2, m) < \cdots < \alpha(3^{m-1}, m) < \beta(3^{m-1}, m) < \alpha(1, m+1),$$

(2)
$$\alpha(j,m) \in A_{2m}, \quad \beta(j,m) \in A_{2m+1}$$
 for all j.

It is possible to find $\alpha(j, m)$, $\beta(j, m)$ as above, because the sets A_{2m} and A_{2m+1} are infinite.

Let us notice that

(3)
$$f_{\alpha(j,m)} = f_{\alpha(j,m)}(m) \cdot (3^{m}y_{m} + e_{m} + g_{\alpha(j,m)}),$$
$$f_{\beta(j,m)} = f_{\beta(j,m)}(m) \cdot (-3^{m}y_{m} + e_{m} + g_{\beta(j,m)}),$$

where supp $g_{\alpha(j,m)} \cup$ supp $g_{\beta(j,m)} \subset [2m, \infty)$.

Now we are ready to define the coefficients b_n . If *n* is not of the form $\alpha(j, m)$ or $\beta(j, m)$, then we set $b_n = 0$. Otherwise, we define b_n by recursion in the following way:

$$b_{\alpha(1,1)} = \frac{1}{2} (f_{\alpha(1,1)}(1))^{-1}, \qquad b_{\beta(1,1)} = -\frac{1}{2} (f_{\beta(1,1)}(1))^{-1}$$

and, having defined b_n for $n \leq \beta(3^{m-2}, m-1)$, we set

$$x_m = \sum_{n \leq \beta(3^{m-2}, m-1)} b_n f_n$$

and, for n of the form $\alpha(j, m)$ or $\beta(j, m)$, we set

$$b_n = \frac{1}{2} 3^{-m+1} x_m(m) \cdot f_n(m)^{-1}.$$

Let us notice that, for an n like above,

(4)
$$|b_n| = \frac{3}{2} \cdot |x_m(m)|$$

For $1 \leq N \leq 3^{m-1}$ let us denote

$$B_{N,m}=\sum_{j=1}^{N}(b_{\alpha(j,m)}f_{\alpha(j,m)}+b_{\beta(j,m)}f_{\beta(j,m)}).$$

LEMMA. (a) $B_{N,m}(i) = 0$ for every i < m, every N; (b) $x_m(i) = 0$ for every i < m; (c) $|x_m(i)| \le 2^{m-1} \cdot 3^{1-i}$ for every $i \ge m$, every m; (d) $|B_{N,m}(i)| \le 2^{m-1}3^{1-i}$ for every $i \ge m$, every m.

PROOF. By (3), it follows that

$$b_{\alpha(j,m)}f_{\alpha(j,m)}+b_{\beta(j,m)}f_{\beta(j,m)}=-3^{-m+1}x_m(m)(e_m+h_{m,j}),$$

where supp $h_{m,j} \subset [2m, \infty)$. This yields immediately (a). Moreover,

$$\sum_{j=1}^{3^{m-1}} (b_{\alpha(j,m)} f_{\alpha(j,m)} + b_{\beta(j,m)} f_{\beta(j,m)}) = -x_m(m) e_m + G_m,$$

where supp $G_m \subset [2m, \infty)$. Hence $x_{m+1}(i) = x_m(i)$ if i < m and $x_{m+1}(m) = 0$, therefore (b) follows by induction, since we have also $x_2(1) = 0$.

By (4), we have for every $k \ge 2$

$$B_{N,k}(i) \leq \sum_{j=1}^{N} \left(\left| b_{\alpha(j,k)} f_{\alpha(j,k)}(i) \right| + \left| b_{\beta(j,k)} f_{\beta(j,k)}(i) \right| \right)$$

$$\leq 3^{-i} \sum_{j=1}^{N} \left(\left| b_{\alpha(j,k)} \right| + \left| b_{\beta(j,k)} \right| \right) = 3^{-i} \cdot 2N \cdot \frac{3}{2} \cdot \left| x_k(k) \right|$$

$$\leq 3^{k-i} \left| x_k(k) \right|.$$

Let us set $x_1(1) = 1$. Then the above inequality is valid for k = 1 as well. Hence

$$|x_m(i)| \leq \sum_{k=1}^{m-1} |B_{3^{k-1},k}(i)| \leq 3^{-i} \sum_{k=1}^{m-1} 3^k |x_k(k)|$$

and, in particular,

$$|x_m(m)| \leq 3^{-m} \sum_{k=1}^{m-1} 3^k |x_k(k)|.$$

By induction on m we obtain

$$|x_m(m)| \leq \left(\frac{2}{3}\right)^{m-1}$$
 and $\sum_{k=1}^{m-1} 3^k |x_k(k)| \leq 3 \cdot 2^{m-1}$

and (c), (d) follow easily from the previous inequalities.

Now we are ready to complete the proof of the theorem. Obviously, $b_{\alpha(1,1)} \neq 0$. We shall see that, nevertheless, $\sum_{m \in A} b_m f_m = 0$.

Let us consider a partial sum $S_M = \sum_{n \in A, n \leq M} b_n f_n$.

Obviously, there exist (unique) m = m(M) and N = N(M) where $N \leq 3^m$ such that

$$S_M = x_m + B_{N,m}$$
 or $S_M = x_m + B_{N,m} + b_m f_M$

(the first case corresponds to $M = \alpha(N, m)$, the second to $M = \beta(N, m)$).

When $M \to \infty$, then, clearly, $m \to \infty$. From our lemma we derive easily that

$$\|x_m\| < \sum_{i=m}^{\infty} |x_m(i)| < 2 \cdot \left(\frac{2}{3}\right)^{m-1}, \quad \|B_{N,m}\| < 2 \cdot \left(\frac{2}{3}\right)^{m-1}$$

and by (4),

$$\|b_{\mathsf{M}}f_{\mathsf{M}}\| < \left(\frac{2}{3}\right)^{m-2}.$$

This proves that $S_M \rightarrow 0$.

REFERENCE

1. P. Erdös and E. G. Straus, On linear independence of sequences in a Banach space, Pacific J. Math. 3 (1953), 689–694.

UNIVERSITY OF COPENHAGEN AND THE HEBREW UNIVERSITY OF JERUSALEM

ISTITUTO DI MATEMATICA DEL POLITECNICO MILANO, ITALY